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Abstracts: One of the important assumptions of data is the normality on which most of the statistical model and 

procedures rely on regarding the validity of given data hypothesis. Assuming the normality assumption blindly may 

affect the accuracy of inferences and estimation procedures. As observed, the collected data from real field are not 

always follow the normality assumption. So, data must be verified with adequate statistical test before used. There are 

various kinds of goodness of fit tests in literature. Some of them are special purpose tests, so that they are suitable and 

perform well for some special situations. Others are omnibus tests that are applicable to general cases. Most commonly 

used tests are Pearson’s chi-squared test and EDF (empirical distribution function) tests, such as Kolmogorov-Smirnov, 
Cramer-Von-Mises and Anderson-Darling test. The chi-squared test is easy to use but they are generally less powerful 

than EDF tests. In this paper we want to study the performance of twelve different tests for normality including the 

above mentioned tests. Considering various sample sizes and different alternative hypotheses results are obtained and 

displayed in different tables. Finally, discussions are made on the basis of the results.  

 

Keywords: normality test; power comparison; simulation method, alternative of the form symmetrical and 

asymmetrical distribution 

 

1. INTRODUCTION 

 

Fitting of a probability model to observed data is an 
important statistical problem from both theory and 

application point of view. There is a multitude of 

statistical models and procedures that rely on the validity 

of a given data hypothesis, being the normality of the data 

assumption one of the most commonly found in statistical 

studies. As observed in many models and in research on 

applied statistics and economics, following the normal 

distribution assumption blindly may affect the accuracy of 

inference and estimation procedures. The evaluation of 

this distributional assumption has been addressed, for 

example, in Min (2007) where the conditional normality 

assumption in the sample selection model applied to 
housing demand is examined. The definition of adequate 

normality tests can, therefore, be seen to be of much 

importance since the acceptance or rejection of the 

normality assumption of a given data set plays a central 

role in numerous research fields. As such, the problem of 

testing normality has gained considerable importance in 

both theoretical and empirical research and has led to the 

development of a large number of goodness-of-fit tests to 

detect departures from normality. Given the importance of 

this subject and the widespread development of normality 

tests over the years, comprehensive descriptions and 
power comparisons of such tests have also been the focus 

of attention, thus helping the analyst in the choice of 

suitable tests for his particular needs. Examples of such 

comprehensive reviews on the effectiveness of many 

normality tests towards a wide range of non-normality 

alternatives may be found, for example, in Shapiro and 

Wilk (1965), Stephens(1974), D’Agostino (1971), Bonett 

and Seier(2002), Farrell and Rogers-Stewart(2006), Yazici 

and Yolacan(2007) and in the references cited therein. 

Since the tests that have been developed are based on 

different characteristics of the normal distribution, it can  

 

 

be seen from these comparison studies that their power to 
detect departures from normality can be significantly 

different depending on the nature of the non-normality. 

Furthermore, although the referred comparison studies 

have been appearing over the years, it is worth mentioning 

that some of the more recent ones, e.g. Farrel and Stewart 

(2006), Yazici and Yolacan(2007), do not include several 

interesting and more recently developed tests. Moreover, 

power results presented in Yazici and Yolacan(2007)  

appear to contradict those resulting from previous studies. 

A further comparison of normality tests, such as the one 

proposed herein, can therefore be considered to be of 

foremost interest. A simulation study is presented herein to 
estimate the power of twelve tests aiming to assess the 

validity of the univariate normality assumption of a data 

set. The selected tests include a group of well-established 

normality tests as well as more recently developed ones. 

Section 2 presents a general description of the normality 

tests selected for the study. The effects on the power of the 

tests due to the sample size, the selected significance level 

and the type of alternative distribution are also considered 

in the proposed study. 

 

The study is carried out for various sample sizes n and 
considering several    significance levels α. With respect to 

the considered alternative distributions, the study 

considers a number of statistical distributions that are 

categorized into three sets. The first set includes several 

types of symmetric non-normal distributions, the second 

set includes several types of asymmetric distributions and 

the third set comprises modified normal distributions with 

various shapes. Section 3 presents the simulation approach 

considered in the study and the power results of the 

normality tests for the different alternative distribution 

sets, which are then discussed.  
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Finally, conclusions and recommendations resulting from 

the study are provided in Section 4. 
 

2. GOODNESS-OF-FIT TESTS FOR NORMALITY 

 

The selected normality tests are considered for testing the 

composite null hypothesis for the case where both location 

and scale parameters, μ and σ, respectively, are unknown. 

Normality test formulations differ according to the 

different characteristics of the normal distribution they 

focus. The goodness-of-fit tests considered in the proposed 

study are grouped into four general categories viz. based 

on Empirical distribution function, based on moments, 

based on regression and correlation and others and a brief 
review of each test is presented herein. In the following 

review, it is considered that  nxxx ,...,, 21  represent a 

random sample of size n; )()2()1( ,...,, nxxx  represent the 

order statistics of that sample; 1

2
_

,, bsx , and 2b  are the 

sample mean, variance, skewness and kurtosis, 

respectively, given by 
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where the jth central moment mj is given by  
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2.1 Goodness of Fit test Based on Empirical 

Distribution Functions 

 

2.1.1 The Kolmogorov-Smirnov test modified by 

Lilliefors and Stephens 

Kolmogorov and Smirnov (1933) developed a one sample 

goodness of fit test based on empirical distribution 

function (EDF). Lilliefors (1967) proposed a modification 

of Kolmogorov-Smirnov test for normality when the mean 

and the variance are unknown, and must be estimated from 

the data. The test statistic K-S is defined as     
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Where ),;( 2
_

sxxi  is the cumulative distribution 

function of the normal distribution with parameters 

estimated from the data. The normality hypothesis of the 

data is then rejected for large values of K-S. Table of 

percentage points are found in Lilliefors (1967). 

Modification of K-S statistic given by Stephens (1969) 

from the Lilliefors form is as follows; 

KS* = KS ( n  - 0.01+0.85/ n  ). . . (2.2) 

 

 Comparing with the upper tail significance points of the 

distribution on the null hypothesis; may be rejected the 

null hypothesis if value of KS* exceeds the table value at 

corresponding significance levels. Table of percentage 

point is available in Stephens (1969). 

 

2.1.2.   The Anderson- Darling test 

Anderson and Darling (1952, 1954) introduced a new class 
of quadratic test statistics. These are given by  
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Where Fn(x) is empirical distribution function (EDF), 

)(x  is the cumulative distribution function of the 

standard normal distribution and )(x  is a weight given 

by  

[ 
1))](1).((  xx . It can be seen from Anderson-

Darling (1954) that AD can be written as 
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Where z(i) = (x(i) -
_

x )/s. In order to increase its power when 

  and   are estimated from the sample, a modification 

factor has proposed for AD by Stephens (1974) resulting 

in new statistic AD*: 
 

AD* = AD (1+
2

25.275.0

nn
  )   . . .  (2.4) 

  
The normality hypothesis of the data is then rejected for 

large values of the test statistic. 

Table of percentage points of this statistic is given by 

D’Agostino (1986). 

 

1.1.3 The Zhang-Wu Zc   
Zhang and Wu (2005) recently proposed a new class of 

EDF test statistics ZC and ZA of the general form 
 

Z= 2n{Fn x In 
Fn  x 

F0 x 
 + 

∞
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 (1 − Fn x ) In  

 1−Fn x  

 1−F0 x  
 }dx(x) 

 

Where F0(x) is a hypothetical distribution function 

completely specified and w(x) is a weight function. In the 

case where dw(x) is considered to be [1/F0(x)]. [1/(1-

F0(x))]dF0(x) and F0(x) is )(x ,  the test statistic is 

obtained by  

 

2.1.3(a)  Zhang  ZC test 
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2.1.3(b)  Zhang ZA test 

In the case where dw(x) is considered to be [1/Fn(x)]. 
[1/(1-Fn(x))]dFn(x), the test statistic ZA is the obtained by 
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For both tests, the normality hypothesis of the data is 

rejected for large values of the test statistic.  Table values 

of statistics ZC, and ZA are available in Zhang (2001). 

 

2.2 Goodness of Fit test Based on Moments 

2.3  

2.2.1 The Jarque-Bera test 

The Jarque-Bera test is a popular goodness of fit test in the 
field of economics. It has been first proposed by Bowman 

and Shenton (1975) but is mostly known from the proposal 

of Jarque and Bera (1980). The test statistic JB is defined 

by 
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The normality hypothesis of the data is rejected for large 

values of the test statistic. In addition, according to 

Bowman and Shenton (1975), it can be seen that JB is 

asymptotically chi-squared distributed with two degrees of 

freedom. 

 

2.2.2 The Doornik- Hansen test 

Various modifications of the Jarque-Bera test have been 

proposed over the years in order to increase its efficiency. 

For example, Urzua (1996) introduced a modification 

consisting of a different standardization process for 1b and

2b  , though Thadewald and Buning(2007) showed that 

such modification did not improve the power of the 

original formulation. A less known formulation is that of 
Doornik and Hansen (1994), which suggests the use of the 

transformed skewness and the use of a transformed 

kurtosis according to the proposal in Bowman and 

Shenton (1977). The statistic of Doornik-Hansen test is 

thus given by  
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Where the transform skewness Z ( 1b  ) and kurtosis  2z  

are obtained by Bowman and Shenton (1977) 
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a1 =
 n + 5 (n + 7)

6 n − 3  n + 1 (n2 + 15 − 4)
 

 

a2 = [ n − 2 (n2 + 27n − 70) + b1 n − 7 (n2 + 2n
− 5)] 

a = a1 . a2 
 
The normality hypothesis of the data is rejected for large 

values of the test statistic and DH is also approximately 

chi-squared distributed with two degrees of freedom. 

 

2.2.3   The Gel-Gastwirth robust Jarque-Bera test 

Gel and Gastwirth (2008) recently proposed a robust 

version of the Jarque-Bera test. Stemming from the fact 

that sample moments are, among other things, known to be 

sensitive to outliers. Gel and Gastwirth have proposed a 

modification of JB that uses a robust estimate of the 

dispersion in the skewness and kurtosis definitions given 

in equation (1) instead of the second order central 
moments m2 . The selected robust dispersion measure is 

the average absolute deviation from the median and leads 

to the following statistic of the robust Jarque-Bera test 

RJB given by  
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With Jn obtained by 
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In which M is the sample median. The normality 

hypothesis of the data is rejected for large values of the 

test statistic and RJB asymptotically follows the chi-square 

distribution with two degrees of freedom. 

 

2.2.4 The Bonett- Seier test 
Bonett and Seier (2002) have suggested a modified 

measure of kurtosis for testing normality, which is based 

on a modification of Geary’s proposal (1936). The test 

statistic of new kurtosis measure Tw is thus given by 
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The normality hypothesis of the data is rejected for both 

small and large values of Tw using a two-sided test and it 
is suggested that Tw approximately follows a standard 

normal distribution. 

 

2.3. Regression and Correlation tests 

 

2.3.1 The Shapiro-Wilk test 

The Shapiro and Wilk (1965) W statistic is a well-

established and powerful test of normality. The statistic W 

represents the ratio of two estimates of the variance of a 

normal distribution and is obtained by  
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Where the vectors of weights a is obtained by (a1, a2,… 

,an)=m.V-1. (m. V-1. V-1. mt) -0.5, in which m and V are the 

mean vector and covariance matrix of the order statistics 

of the standard normal distribution.  The computation of 

the vector of weights a considered herein is defined 

according to the improved algorithm presented by Royston 

(1995), which considers the methodology described in 
Royston (1992) and Royston (1993). Given the definition 

of W, it is intuitive to observe the normality hypothesis of 

the data is rejected for small values of W. in order to 

simplify the application of this test, transformations g have 

been defined in Royston (1993) for different sample sizes 

such that g(W) approximately follows a standard normal 

distribution. 

 

2.3.2 The D’Agostino D test 

 

D’Agostino (1971) proposed the test statistic D as an 
extension of the Shapiro-Wilk test. The test statistic D is 

given by  
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Here i is the order or rank of observation X. The test 

statistic D gives an upper and lower critical values. For 

each significance level, if the calculated D is less than or 

equal to the first member of the pair of critical values, or 

greater than or equal to the second member, then the 

normality hypothesis is rejected.  

                                          

2.3.3 The Filliben correlation test 

Filliben (1975) described the probability plot correlation 

coefficient r as a test for normality. The correlation 

coefficient is defined between the sample order statistics 

and the estimated median values of the theoretical order 

statistics.  

Considering that m (1), m (2),…, m(n) represent the estimated 

median values of the order statistics from a uniform 
distribution U(0,1), each m(i) is obtained by 
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upon which the estimated median values of the theoretical 

order statistics can be obtained using the transformation 
1

( ) ( )( )i iM m .  The correlation coefficient r is then 

defined as 
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leading to the rejection of the normality hypothesis of the 

data for small values of r. 

 

2.4 Other tests 

 

2.4.1 The Gel-Miao-Gastwirth test 
Gel, Miao and Gastwirth (2007) have recently proposed a 

directed normality test, which focuses on detecting heavier 

tails and outliers of symmetric distributions. The test is 

based on the ratio of the standard deviation and on the 

robust measure of dispersion Jn defined in equation (2). 

The normality test statistic R sJ   is therefore given by 

 

R sJ = s/Jn      . . .    (2.14) 

 

which should tend to one under a normal distribution. 
According to Gel, Miao and Gastwirth (2007) , the  

normality hypothesis of the data is rejected for large 

values of RsJ and the statistic n (RsJ -1) is seen to 

asymptotically follow the normal distribution    N(0; 

1.5
2


 ). However, it has been empirically found that 

rejecting the normality hypothesis using a two-sided test 

extends the range of application of this test, namely to 
light-tailed distributions, without a significant reduction of 

its power towards heavy-tailed distributions. Given its 

enhanced behaviour, the two-sided test is the primary 

choice for the proposed study. 

 

3. SIMULATION STUDY 

 

To study the empirical level and power of twelve tests 

statistics we have generated sample from different 

distributions. The study was carried out for six different (n 

= 10,20,25,30,50 and 100 ) sample sizes and considering 

significance levels 0.10,0.05 and 0.01 (for 1 percent level 
not shown in table due to space ) considering the 



IARJSET   ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 3, Issue 6, June 2016 
 

Copyright to IARJSET                                  DOI 10.17148/IARJSET.2016.3645                                                    234 

alternative of non-normal symmetric, asymmetric and 

contaminated normal (80% observations from N(0,1) and 
the remaining 20% from N(0,3)) distributions. Results 

obtained are shown in different tables given below. Here, 

normal observations are generated using Box-Muller 

(1958) formula and for the other distributions, method of 

inverse integral transformations is used. For each result 

10,000 repetitions are made. The ratio of number of test 
statistic value greater than critical value divided by the 

total number of repetition gives the empirical level of test 

statistic under null case and power of the test statistic 

under the alternative hypothesis.  

 

4. RESULTS 

 
Table 1(a) Empirical levels of test under Normal (0,1) Distribution 

 
Sample 

size(n) 

                                                                         Test Statistics 

          K-S                      AD                        ZA                        ZC                         D                         r 

α =.10     .05          .10        .05           .10        .05           .10       .05           .10         .05         .10          .05 

10 .1062    .0532 .1025    .0521 .1010    .0501 .1011    .0510 .1066     .0527 .0996    .0495 

20 .1040    .0541 .1043    .0510 .1026    .0505 .1018    .0495 .1089     .0503 .1045    .0486 

25 .1034    .0542 .0976    .0518 .0922    .0506 .0970    .0500 .0966     .0490 .1044    .0533 

30 .1032    .0545 .0984    .0526 .1022    .0499 .0969    .0501 .1026     .0518 .0953    .0534 

50 .1039    .0529 .0960    .0450 .0951    .0461 .0913    .0443 .0951     .0504 .1028    .0544 

100 .1061    .0568 .0970    .0525 .1012    .0514 .0916    .0450 .1014     .0530 .0965    .0544 

 
Table 1(b) Empirical levels of tests under Normal (0,1)  Distribution 

 
Sample 

size(n) 

                                                                        Test Statistics 

            JB                      RJB                  BS(Tw)                    DH                   GMG(RSJ)              W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .0853    .0450 .0731    .0554 .1032    .0421 .1032    .0449 .1470    .0782 .0953   .0450 

20 .0890    .0480 .0826    .0623 .0993    .0443 .0935    .0447 .1195    .0555 .1000    .0530 

25 .0910    .0490 .0837    .0633 .1002    .0497 .0984    .0477 .1090    .0506 .0989    .0502 

30 .0930    .0490 .0865    .0657 .0995    .0478 .0936    .0491 .0995    .0464 .0969    .0484 

50 .0970    .0510 .0847    .0584 .1002    .0497 .0905    .0485 .0936    .0378 .0979    .0473 

100 .0720    .0460 .0887    .0611 .0989    .0503 .1000    .0485 .0847    .0318 -       - 

 
Table 2(a) Empirical power of tests under Cauchy (0,1) Distribution 

 
Sample 
size(n) 

Test Statistics 
 

           K-S                        AD                       ZA                        ZC                        D                          r                              

α =.10      .05            .10        .05         .10       .05           .10       .05           .10         .05           .10      .05 

10  .6639    .5928 .7251   .6418 .8565    .8023 .8919    .8697 .6621    .5892 .7026    .6329 

20  .8847    .8463 .9090    .8450 .9731    .9554 .9829    .9776 .9064    .8120 .9424    .8753 

25  .9355    .9105 .9537   .9104 .9880    .9804 .9942    .9910 .9262    .8830 .9552    .9363 

30  .9619    .9458 .9784   .9494 .9963    .9924 .9981    .9975 .9566    .9290 .9755    .9637 

50  .9966    .9944 .9993   .9964 .9999    .9998 1.000    .9999 .9977    .9928 .9989    .9984 

100  1.000    1.000 1.000    1.000 1.000    1.000 1.000    1.000 1.000    1.000 1.000    1.000 

 
Table 2(b) Empirical power of tests under Cauchy (0,1) Distribution 

 
Sample 

size(n) 

Test Statistics 

           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)                W 

α =.10     .05          .10         .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .4850    .4370        .6839    .6554 .5463    .4928 .6988    .6098 .7677    .6632 .6534    .5878 

20 .8438    .8188 .9218    .9097 .8884    .8630 .9098    .8736 .9481    .9004 .8911    .8614 

25 .9144    .8958 .9622    .9539 .9444    .9303 .9500    .9276 .9731    .9476 .9394    .9197 

30 .9509    .9396 .9809    .9768 .9740    .9663 .9728    .9568 .9886    .9739 .9596    .9458 

50 .9962    .9941 .9992    .9989 .9993    .9990 .9978    .9962 .9998    .9989 .9952    .9928 

100 1.000    1.000 1.000    1.000 1.000    1.000 1.000    1.000 1.000    1.000       -         - 
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Table 3(a) Empirical power of tests under Logistic (0,1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           K-S                        AD                       ZA                        ZC                        D                       r                        

α =.10      .05            .10        .05           .10       .05           .10       .05          .10         .05         .10     .05 

10  .1350    .0772 .6158    .4851 .6740    .5562 .7439    .6897 .2735    .1865 .1567    .0893 

20  .1465    .0849 .8031    .6942 .8672    .8004 .9101    .8719 .3892    .2817 .2155    .1394 

25  .1588    .0922 .8640    .7700 .9203    .8722 .9488    .9269 .4406    .3246 .2424    .1666 

30  .1648    .0973 .9069    .8344 .9537    .9192 .9680    .9549 .4849    .3669 .2601    .1881 

50  .1967    .1241 .9823    .9587 .9945    .9897 .9960    .9942 .6325    .5201 .3488    .2597 

100  .2526    .1621 .9998    .9994 1.000    1.000 1.000    1.000 .8591    .7860 .4632    .3780 

 

Table 3(b) Empirical power of tests under Logistic (0,1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)                 W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .0375    .0250        .1259    .1027 .1174    .0581 .1555    .0773 .2198    .0947 .1344    .0749 

20 .1188    .0912 .2078    .1727 .1617    .1048 .2147    .1363 .2504    .1187 .1797    .1177 

25 .1509    .1177 .2339    .1971 .1801    .1203 .2352    .1566 .2625    .1235 .1932    .1272 

30 .1821    .1458 .2609    .2240 .2001    .1377 .2602    .1779 .2851    .1386 .1991    .1312 

50 .2688    .2235 .3507    .3004 .2689    .1974 .3294    .2470 .3471    .1749 .2017    .1353 

100 .4336    .3763 .5023    .4470 .4196    .3238 .4727    .3806 .4789    .2605 -       - 

 

Table 4(a) Empirical power of tests under Double Exponential (0,1)Distribution 
 

Sample 

size(n) 

Test Statistics 

           K-S                        AD                       ZA                        ZC                       D                      r                          

α =.10      .05            .10        .05           .10       .05          .10       .05          .10       .05          .10        .05 

10  .2254    .1475 .2746    .1759 .3839   .2735 .4707    .4004 .2227    .1446 .2654    .1804 

20  .3166    .2193 .3308    .2106 .5170    .3958 .6295    .5484 .3883    .2773 .4249    .3155 

25  .3646    .2641 .3574    .2274 .5651    .4532 .6806    .6113 .4420    .3410 .4842    .3763 

30  .4050    .3067 .3802    .2509 .6275    .5042 .7291    .6618 .5069    .3694 .5301    .4337 

50  .5596    .4448  .4898   .3722 .7950    .7002 .8612    .8184 .6856    .5929 .6989    .6059 

100  .8151    .7191 .7244    .5650 .9639    .9322 .9775    .9665 .9178    .8703 .8909    .8403 

 

Table 4(b) Empirical power of tests under Double Exponential (0,1) Distribution 
 

Sample 
size(n) 

Test Statistics 
           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)                W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .0897    .0587       .2435    .2082 .1733    .1154 .2741    .1633 .3706    .2038 .2216    .1460 

20 .2614    .2103 .4270    .3824 .3514    .2756 .4083    .3040 .5216    .3250 .3483    .2628 

25 .3311    .2767 .4981    .4502 .4346    .3549 .4604    .3574 .5858    .3843 .3904    .3024 

30 .3869    .3300 .5584    .5096 .5037    .4185 .5078    .4011 .6486    .4381 .4216    .3252 

50 .5693    .5124 .7263    .6800 .7157    .6362 .6513    .5548 .8006    .6198 .4932    .3992 

100 .8193    .7731 .9212    .8939 .9406    .9071 .8617    .7965 .9590    .8769 -      - 

 

Table 5(a) Empirical power of tests under Exponential ( =1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           K-S                        AD                       ZA                        ZC                         D                      r                       

α =.10      .05            .10        .05           .10       .05           .10       .05           .10         .05         .10      .05 

10  .4226    .3059 1.000    .9867 1.000   1.000    1.000    .9966 .3609    .2662 .5376    .4097 

20  .7065    .5899 1.000   1.000    1.000   1.000    1.000    1.000    .6055    .5075 .8695    .7839 

25  .8036    .7040 1.000   1.000    1.000   1.000    1.000    1.000    .6945    .6017 .9369    .8840 

30  .8788    .7967 1.000   1.000    1.000   1.000    1.000    1.000    .7569    .6791 .9709    .9457 

50  .9828    .9608 1.000   1.000    1.000   1.000    1.000    1.000    .9169    .8747 .9998    .9985 

100  1.000    1.000    1.000   1.000    1.000   1.000    1.000    1.000    .9960    .9911 1.000    1.000 
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Table 5(b) Empirical power of tests under Exponential ( =1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)               W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .1945    .1437       .3551    .3187 .1830    .1046 .4592    .3238 .3842    .2478 .5640    .4316 

20 .5600    .4761 .6452    .5939 .2747    .2018 .8280    .7218 .5168    .3763 .9028    .8366 

25 .7011    .6106 .7457    .6967 .3139    .2391 .9153    .8489 .5718    .4262 .9623    .9218 

30 .8109    .7245 .8281    .7828 .3380    .2652 .9605    .9207 .6243    .4757 .9864    .9677 

50 .9830    .9534 .9695    .9476 .4474    .3744 .9989    .9960 .7580    .6239 .9998    .9996 

100 1.000    .9999    .9999    .9998 .6461    .5785 1.000    1.000    .9225    .8490 -      - 

 

Table 6(a) Empirical power of tests under Lognormal (0,1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           K-S                        AD                       ZA                       ZC                         D                         r                     

α =.10      .05          .10        .05         .10       .05           .10         .05           .10         .05          .10         .05 

10  .5858    .4798 1.000    1.000 1.000    1.000    1.000    1.000 .5347    .4486 .6835    .5825 

20  .8640    .7985 1.000    1.000    1.000    1.000    1.000    1.000    .8166    .7581 .9461    .9090 

25  .9318    .8858 1.000    1.000    1.000    1.000    1.000    1.000    .8903    .8433 .9801    .9627 

30  .9651    .9345 1.000    1.000    1.000    1.000    1.000    1.000    .9331    .9046 .9924    .9850 

50  .9986    .9955 1.000    1.000    1.000    1.000    1.000    1.000    .9895    .9837 .9998    .9998 

100  1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    .9999 1.000    1.000 

 

Table 6(b) Empirical power of tests under Lognormal (0,1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           JB                       RJB                   BS(Tw)                   DH                   GMG(RSJ)               W 
α =.10     .05          .10        .05          .10        .05          .10         .05           .10        .05          .10       .05 

10 .3472    .2894      .5219    .4897 .2685    .2047 .6165    .4983 .5503    .4681 .6981    .5979 

20 .7808    .7240 .8354    .8074 .4865    .4215 .9257    .8815 .7660    .6931 .9602    .9295 

25 .8871    .8422 .9079    .8856 .5692    .5112 .9739    .9515 .8262    .7653 .9860    .9747 

30 .9475    .9122 .9531    .9369 .6401    .5837 .9902    .9806 .8750    .8262 .9954    .9908 

50 .9982    .9955 .9971    .9944 .8178    .7817 .9997    .9997    .9596    .9404    .9999    .9998 

100 1.000    1.000    1.000    1.000 .9685    .9574 1.000    1.000    .9989    .9967   -     - 

 

Table 7(a) Empirical power of tests under Uniform (-1,1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           K-S                        AD                       ZA                        ZC                         D                       r              

α =.10      .05            .10        .05           .10       .05           .10       .05           .10         .05        .10       .05 

10  .1321    .0692 .0566    .0180 .2071    .0839 .1769    .0401 .0911    .0425 .1084    .0427 

20  .1886    .1031 .1863    .0564 1.000    .9600 .9935    .6146 .2009    .0978 .1755    .0695 

25  .2196    .1222 .3211    .1020 1.000    1.000 1.000    .9909 .2406    .1303 .2210    .0928 

30  .2581    .1510 .5078    .1812 1.000    1.000 1.000    1.000 .3544    .2216 .2731    .1372 

50  .4189    .2760 .9969    .8157 1.000    1.000 1.000    1.000 .6955    .5541 .6505    .4493 

100  .7605    .6070 1.000    1.000 1.000    1.000 1.000    1.000 .9786    .9599 .9845    .9486 

 

Table 7(b) Empirical power of tests under Uniform (-1, 1) Distribution 
 

Sample 

size(n) 

Test Statistics 

           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)               W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .0036    .0019     .0255    .0186 .2074    .0935 .1174    .0596 .0496    .0221 .1721    .0784 

20 .0014    .0008 .0061    .0040 .3698    .2127 .1933    .0915 .0394    .0031 .3588    .2045 

25 .0010    .0001 .0031    .0019 .4521    .2832 .2577    .1336 .0915    .0089 .4729    .2935 

30 .0010    .0000 .0022    .0013 .5269    .3523 .3245    .1768 .1402    .0166 .6182    .4189 

50 .0271    .0002 .0008    .0003 .7703    .6222 .6586    .4509 .4415    .1567 .9473    .8592 

100 .9126    .5626 .5002    .0430 .9761    .9374 .9874    .9530 .9015    .7040 -      - 
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Table 8(a) Empirical power of tests under Contaminated Normal Distribution 

 

Sample 
size(n) 

Test Statistics 
           K-S                        AD                       ZA                        ZC                         D                       r              

α =.10      .05            .10        .05           .10       .05           .10       .05           .10         .05        .10       .05 

10  .7477    .6788 .3271     .2037 .4578     .3410 .5825    .5157 .3039    .2184 .3588    .2633 

20  .9564    .9323 .4005     .2599 .6483     .5250 .7546    .6953 .5225    .4273 .5700    .4727 

25  .9825    .9708  .4453    .3003  .7054    .6040 .8127    .7564 .5930    .5048 .6417    .5472 

30  .9935    .9890 .4789     .3270  .7760    .6783 .8608    .8151 .6677    .5827 .7023    .6232 

50  .9999    .9996 .6393     .4720  .9196    .8628 .9526    .9327 .8341    .7737 .8536    .8023 

100  1.000    1.000  .8878    .7740  .9954    .9908 .9979    .9966 .9759    .9608 .9730    .9577 

 

Table 8(b) Empirical power of tests under Contaminated Normal Distribution 

 

Sample 
size(n) 

Test Statistics 
           JB                       RJB                  BS(Tw)                   DH                   GMG(RSJ)               W 

α =.10     .05          .10        .05          .10        .05          .10         .05           .10       .05          .10        .05 

10 .1610    .1176     .3313    .2952 .2284    .1654 .3573    .2367 .4233    .3170 .1072    .2227 

20 .4401    .3852 .5732    .5350 .4521    .3795 .5706    .4705 .5995    .4883 .2620    .4136 

25 .5272    .4708 .6439    .6051 .5280    .4565 .6409    .5432 .6467    .5387 .3101    .4693 

30 .6168    .5617 .7149    .6791 .6000    .5294 .7114    .6230 .7047    .6061 .3512    .5079 

50 .8030    .7597 .8597    .8302 .7795    .7257  .8518   .7887 .8377    .7575 .4590    .6094 

100 .9670    .9546 .9769    .9691 .9576    .9358  .9748   .9586 .9666    .9390 -      - 

  

5. DISCUSSIONS 

 

Table 1(a) and Table 1(b) show the empirical level of 

twelve tests for six different sample sizes. It is seen that all 

the test statistics almost satisfy its nominal levels. 

However, the K-S, D and RsJ are found to be 

anticonservative in few situations and JB and RJB are 

found to be conservative in all sample sizes. But as the 

sample sizes increases, empirical levels of the entire test 
statistics come closer to nominal levels. 
 

Table 2(a) and Table 2(b) above show the empirical power 

of twelve tests under the alternative of the Cauchy 

distribution. It is seen that power of all the tests increases 

as the sample sizes increases. Out of the twelve tests, 

power of ZA, ZC and RsJ tests seems to be more than the 
other tests. But as the sample sizes increases power of all 

the tests come closer to each other and  finally come to 

exactly equal to one.  
 

Table 3(a) and Table 3(b) above display empirical power 

of all tests mention in section 2. Under the alternative of 

Logistic distribution. In this case also empirical power of 
ZA and ZC seem to be higher than the other tests. Power of 

Anderson-Darling test (AD) is also quite good and higher 

than the other tests except ZA and ZC and closed to ZA and 

ZC in large sample cases. It is seen that Empirical power of 

JB test is the lowest of all. However, empirical power of 

all the tests increases as the sample sizes increases.  
  

Table 4(a) and 4(b) depict the empirical power of tests 

under the alternative of Double Exponential distribution. 

Here, along with the ZA and ZC tests power of RsJ are more 

than the other tests. Power of AD, r, RJB, DH and D are 

less than above three tests but found to be more than 

remaining tests. Here also, empirical power of all the tests 

increases as the sample sizes increases. 

 

 

Table 5(a) and 5(b) show the empirical power of tests 

under the alternative of Exponential distribution. Here we 

have seen that empirical power of ZA, ZC and AD are 

exactly equal and even in small sample sizes. Power of K-

S, D, r, RJB, DH, RsJ and W are more or less similar but 

less than above three tests and higher than BS and JB tests.  

 
Table 6(a) and 6(b) show the power of tests under the 

alternative of Lognormal distribution. It is observed that 

power of all the tests is similar as the exponential 

distribution. That is empirical power of ZA,ZC and AD are 

higher than others and BS and JB are exhibit lowest power 

and other remaining tests lies in between these two groups. 

But in large sample cases empirical power of all the tests 

are found to be almost equal. 

 

Table 7(a) and 7(b) show the empirical power of tests 

under the alternative of Uniform distribution. Here we 
have seen that empirical power of ZA, ZC, BS and W are 

higher than the other tests. The empirical power of the JB 

test seems to be the lowest of all the tests. Here also, 

empirical power of all the tests increases as the sample 

sizes increases. 

 

Table 8(a) and 8(b) show the empirical power of tests 

under the alternative of Modified Normal distribution. 

Here we have seen that empirical power of the K-S test 

seems to be higher than the other tests.  

 

The empirical power of r, RJB and DH are more or less 
similar but less than ZA, ZC and RSJ. The empirical power 

of W test seems to be the lowest of all the tests. Here also, 

the power of the tests increases as the sample sizes 

increases. 
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Fig.1 Empirical Power of test under Cauchy (0, 1) Distribution (for α=.05) 

 

 
Fig.2 Empirical Power of test under Logistic (0,1)Distribution (for α=.05) 

 

 
Fig.3 Empirical Power of test under Double Exponential (0,1)Distribution (for α=.05) 
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Fig.4 Empirical Power of test under Exponential (λ=1) Distribution (for α=.05) 

 

 
Fig.5 Empirical Power of test under Lognormal (0,1) Distribution  (for α=.05) 

 

 
Fig.6 Empirical Power of Uniform (-1,1) Distribution (for α=.05) 
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Fig.7 Empirical Power of Contaminated Normal Distribution (for α=.05) 

 

6. CONCLUSION 
 

Power of ZA and ZC are found to be more than the other 
tests for both symmetrical and asymmetrical alternative. 

Gel-Miao-Gastwirth (RsJ) test also exhibits almost equal 

power as the ZA and ZC tests in large sample cases under 

the alternative of Cauchy distribution. Anderson-Darling 

test is same as ZA and ZC in case of asymmetrical 

distribution but shows lower power in case of alternative 

of symmetrical distribution. Over all power of Filliben 

correlation test r is good, although its power is less than ZA 

and ZC. Power of Kolmogorov-Sminov test is found to be 

higher than the other tests only for Contaminated Normal 

distribution. Tests JB and BS (except for Uniform 

distribution) show less power in all situations discussed 
here. Finally, we arrive at the conclusion that ZA and ZC 

may be recommended for all situations. We may give 

second preference to Filliben correlation test(r) and 

Anderson–Darling test (AD) for test of normality. 
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